

Amateur Radio Intranet When All Else Fails...

FRRL Program March 2014 AH6EZ

Cellular and the Internet

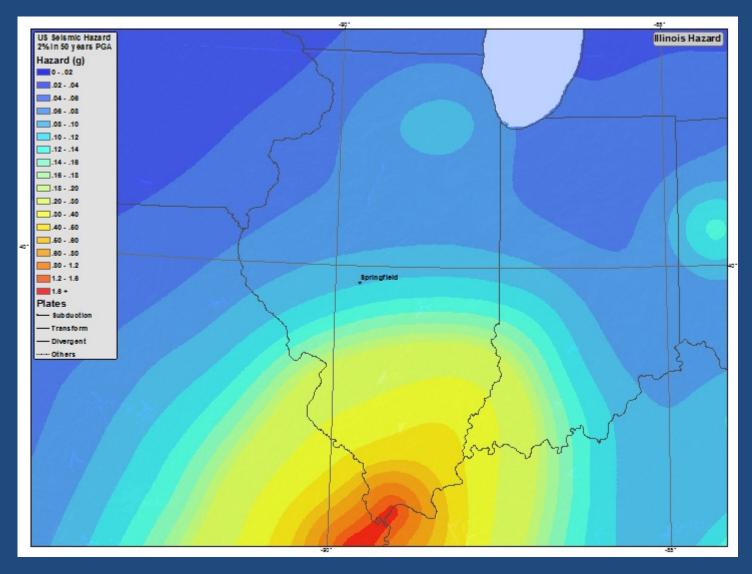
- Almost everyone uses them
 - Voice, text, video, pictures, social networks, browsing
 - Essentially for connectivity and information
 - Accustomed to high availability
- Designed for average loading
 - Not peak loading during disasters or emergencies
- Can be turned off or prioritized for Public Safety

Cellular Backup

- Major Cellular Carriers have Cell On Wheels
- Can be deployed fairly quickly
- May have lower capacity, user restrictions

Internet Backup

- Many ways to get to the Internet


 Cellular, cable modem, telephone (DSL)
- Unless the electric utility power fails
- Any Amateur Radio solution needs backup power

 Start with a few hours for most incidents
 Then up to indefinite duration under your control
- Bridge from inside affected area to normal outside

Areas of Need

- Local emergencies
 - Nearby systems undamaged and provide coverage
 - Perhaps not as much need for Amateur Radio
 - Separate parallel network could avoid congestion
- Regional disasters
 - Nearby systems perhaps damaged, no coverage
 - Outer boundary connection by nomadic/mesh network
 - Amateur Radio RF spectrum variety very useful
 - More people affected, more time/resources to respond

Illinois Earthquake Hazards

We have a .06-.08% chance in 50 years

Illinois Tornado History

Kane County – Local Emergency

Cellular and Internet Probably Still Accessible

Kane County – Tornado Disaster

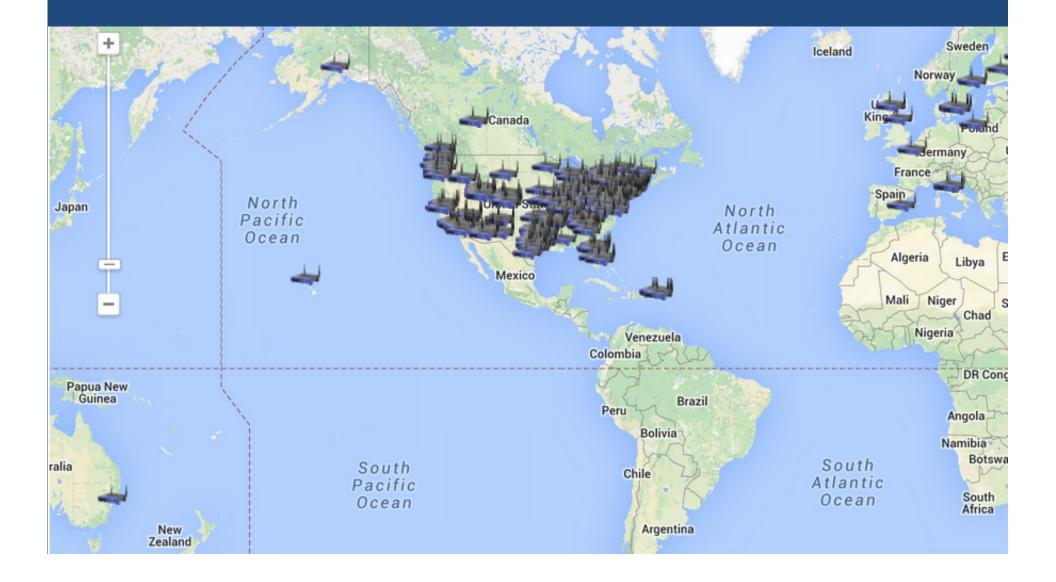
Cellular and Internet Might Not be Accessible From Within Disaster Area

Gaining Attention of Served Agencies

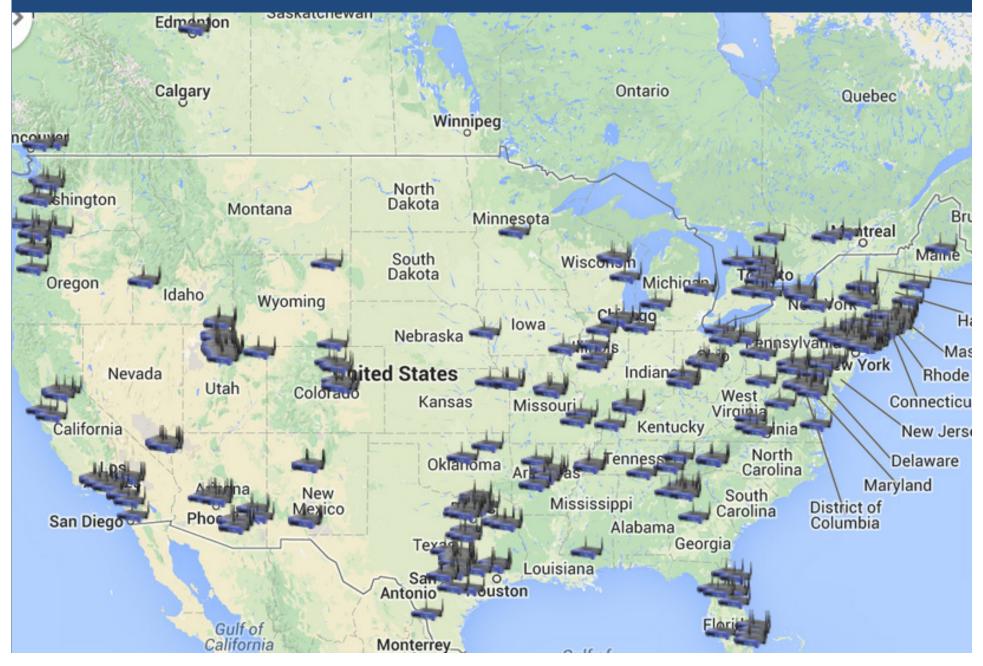
- Show them applications <u>without</u> their Internet
 - Telephone voice with PBX (Asterisk-free)
 - Raspberry Pi can be an Asterisk pbx
 - Video Teleconference (iVisit free and no server)
 - PTT audio connections to external HF VHF/UHF radios
 - Electronic ICS/ARRL entry forms and error free xmsn
 - Bluetooth interface to their out of service SmartPhone
 - File storage and web servers

Public Safety Getting LTE data on 700 MHz

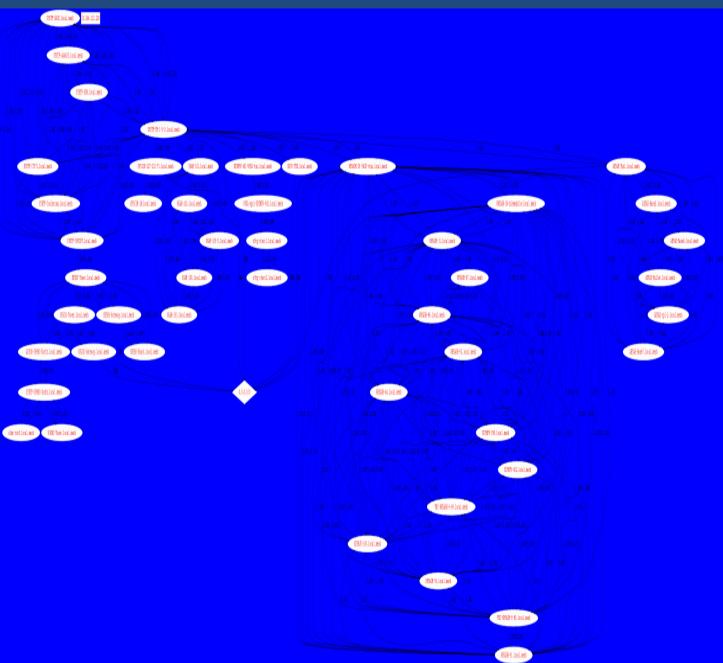
- Vehicular, handheld, USB user devices
- PTT Voice (also P25 integration), video, etc.
- 500Kb to 50Mbps adaptive data
- Presently stalled by FirstNet (new Federal Board)

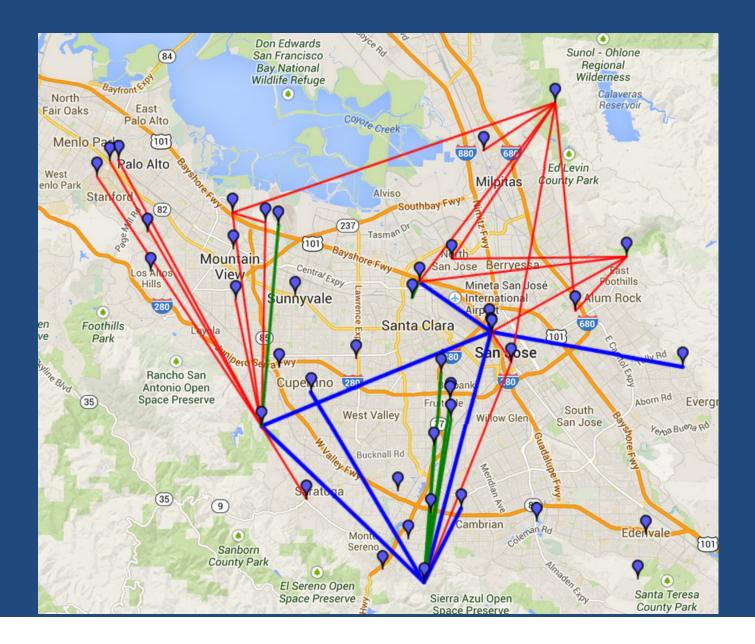

Pure HSMM

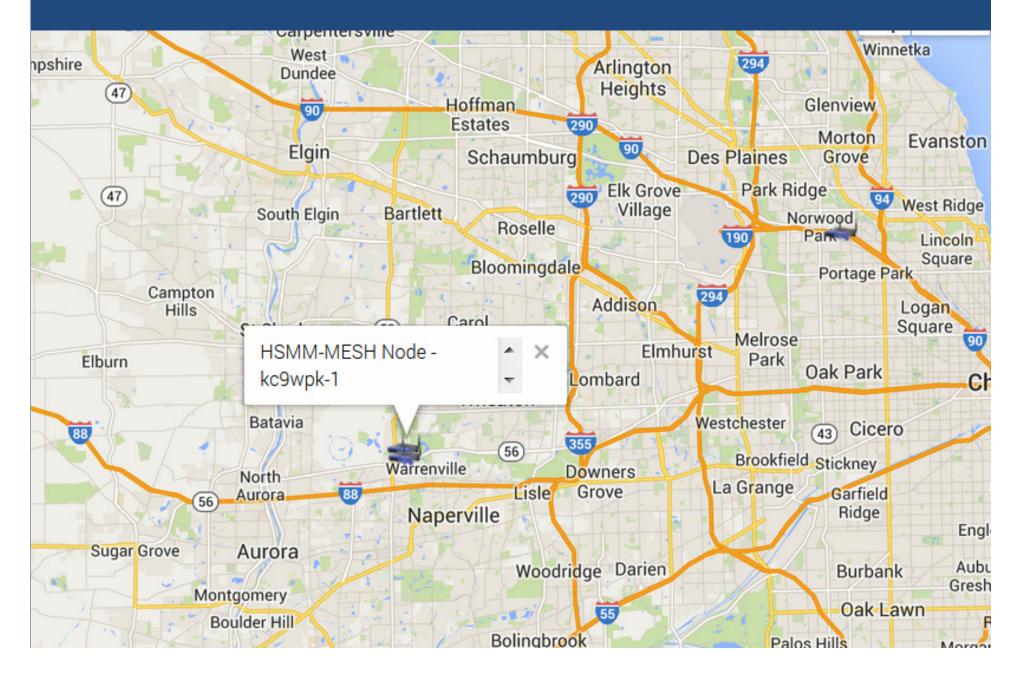
- Mostly 2.4 GHz WiFi on Part 97 frequencies
 - Watch out for vegetation and building losses
 - .05dB/m at VHF and .35dB/m at 2.4 GHz
- Frequently mesh network
 - Fixed, mobile, and portable units
- May include PTP links to bridge coverage gaps
- 10 minute ID as normal
- NO commercial traffic (maybe no Internet access)
- Encryption allowed as long as there is public notification
- Authentication important
- Data speed is link loss adaptive
- End-to-end data speed through mesh is divided by number of hops


Hinternet or HSMM Activity

- SF Bay Area
 - South Bay 40 nodes
 - Looks to be using mountain top sites and PTP/PMP links
 - Alameda ?
- Plano/Austin Texas 48 nodes
- El Paso, TX 10 nodes
 - IRC chat
- New York City ?
- Southern Puget Sound (Seattle), Washington
 - Can't use 420-430 MHz above Line A
- San Diego/Mexico per April 2014 QST


Global map of HSMM Nodes


US Map of HSMM Nodes


Austin TX HSMM Network

South SF Bay Area

"Registered" Northern Illinois Nodes

Amateur Radio Spectrum Flexibility

- HF long distances, slow data speeds (300 bps)
 - Voice, Packet, AMTOR, RTTY, PSK, SSTV, CW
- VHF County-wide
 - Voice Repeaters
 - D-Star 4.8Kbps text, APRS, 9.6Kbps packet data
 - Yaesu System Fusion 9.6Kbps data and still frame pictures
- 70cm (420-430 MHz)
 - Same as VHF, some vegetation losses, also 56Kbps data legal but few radios available
- 902-928 MHz
 - Most commercial equipment is 4W ERP, better vegetation penetration
- 1.2 GHz Higher vegetation losses
 - D-Star 128Kbps Data
- 2.4 GHz WiFi Channels 1-6 are FCC Part 97 shared
 - Low power commercial meshable equipment available
 - Higher power can overcome some higher vegetation losses
- 3.4 GHz Even higher vegetation losses
 - Some commercially adaptable equipment
- 5.8 GHz Even higher vegetation losses
 - Some commercially adaptable equipment

Amateur Part 97 and Shared WiFi Frequencies

	802.11b/g (13 d	cm)	802.11a (5 cm)			
Channel	Center Frequency	FCC Rules	Channel	Center Frequency	FCC Rules	
-1	2.402 GHz	Part 97	132	5.660 GHz	Part 97	
0	2.407 GHz	Part 97	136	5.680 GHz	Part 97	
1	2.412 GHz	Part 97 & Part 15	140	5.700 GHz	Part 97	
2	2.417 GHz	Part 97 & Part 15	149	5.745 GHz	Part 97 & Part 15	
3	2.422 GHz	Part 97 & Part 15	153	5.765 GHz	Part 97 & Part 15	
4	2.427 GHz	Part 97 & Part 15	157	5.785 GHz	Part 97 & Part 15	
5	2.432 GHz	Part 97 & Part 15	161	5.805 GHz	Part 97 & Part 15	
6	2.437 GHz	Part 97 & Part 15	165	5.825 GHz	Part 97 & Part 15	
В	e careful of band	d edges	169	5.845 GHz	Part 97	
	802.11b needs 2	0	173	5.865 GHz	Part 97	
பட		lt of Ch 1	177	5.885 GHz	Part 97	
HSMM uses default of Ch 1			180	5.905 GHz	Part 97	

Power Limits

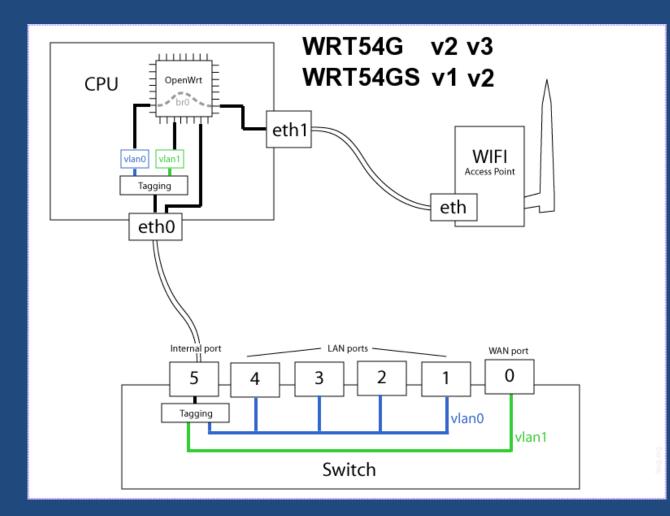
- 802.11a 5.8 GHz secondary shared use
 - OFDM: 1500 watts
- 802.11b 2.4 GHz secondary to Fed, primary to ISM
 DSSS: 10 watts
- 802.11g 2.4 GHz secondary to Fed, primary to ISM
 OFDM: 1500 watts
- 802.11n 2.4/5.8 GHz secondary to Fed, primary to ISM
 OFDM: 1500 watts

FCC Part 97 frequency sharing

- 2300-2301 Note d,p
- 2390-2450 Note d,e,p
- 3300-3500 Note a,b,f,q
- 5650-5925 Note a,b,e,r (Region 2 North/South America)

a: Equality of right to operate with adjacent regions
b: No RFI to/from US Govt radio location
d: 3300-3400, 5650-5850 no RFI to other nation radio location
e: 2400-2450, 5725-5875 accept RFI from ISM users
f: 3332-3339, 3345.8-3352.5 no RFI to radio astronomy
p: 2305-2310 no RFI to/from aeronautical mobile or radio location
q: 3400-3500 no RFI to/from fixed satellite
r: 5650-5725 no RFI to/from other nations mobiles
5850-5925 no RFI to/from other nations satellite

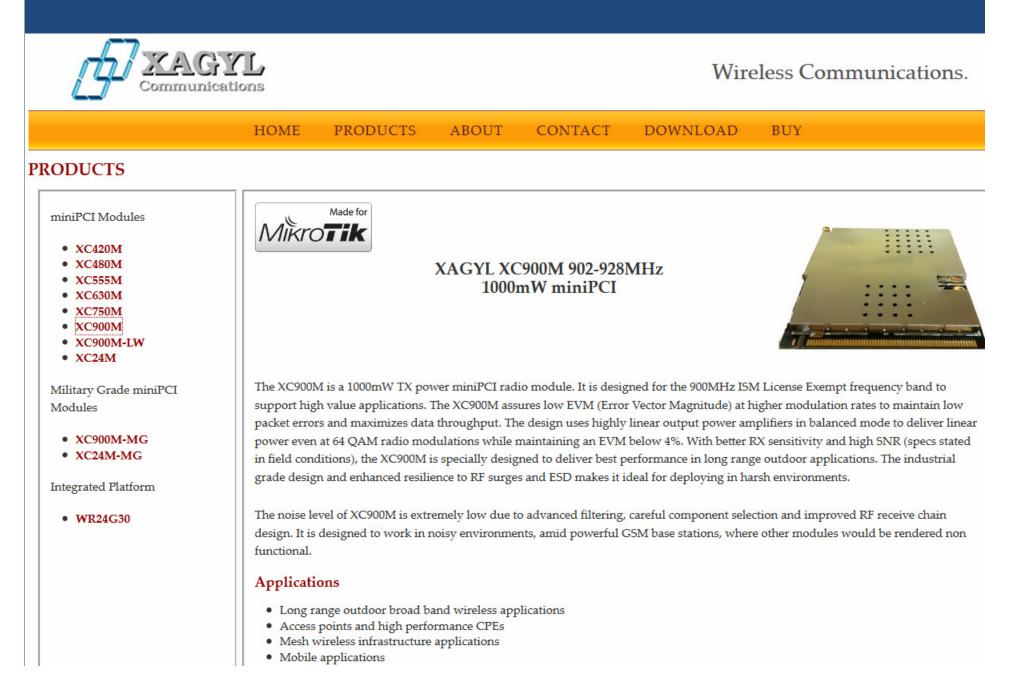
HSMM Software


- Open WRT
 - Use web browser to upgrade firmware
 - Stateful Packet Inspection
 - Intrusion Detection
- OLSR
 - Routing protocol that creates a mesh network
 - Linux software shows mesh topology w/graphviz and ImageMagick
- Linksys WRT54G/GL
 - Firmware to operate as HSMM on Part 97

Linksys WRT54

You can add SD card and USB port

WRT54G Internal Architecture


Linksys Shopping List

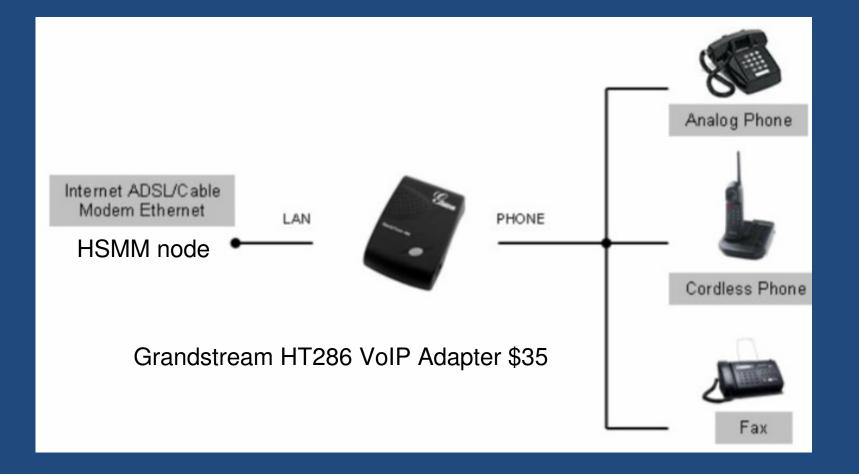
Simplified shopping list:

Model	Version	Comments	
WRT54GS	1.0 - 3.0	Most memory (32/8) MB	
	$\begin{array}{c} 4.0 \\ 1.1 - 4.0 \\ 1.0 - 1.1 \end{array}$	16/4 MB	
WRT54G	1.0	16/4 MB 5V DC power Warning - uses different supply voltage from all other models.	

Higher numbered versions of each model are *not compatible* with Broadband-Hamnet[™] firmware.

6-54 Mbps solution with 5-20 MHz channels, \$99

Ubiquiti now compatible Feb 1, 2014


Ubiquiti firmware for the listed devices is available from the Software Download page, and properly interacts with BBHN 1.0.0 devices.

- Rocket M2 (w/GPS) \$89
- Bullet M2 HP (PoE, no coax) \$96
- AirGrid M2 HP
- NanoStation Loco M2 (NSL-M2) \$79
- NanoStation M2 (NS-M2)
- Some models have two Eth ports (IP camera?)
- Some models have built-in spectrum analyzers

Ubiquiti NanoStation M2						
Link Calculation						
2.4 GHz						
TX Power	28.0	dBm				
Antenna Gain	10.4	dBi				
Path Length	5.0	miles				
Path Loss	118.2	dB				
Vegetation Distance	100.0	feet				
Vegetation Loss	10.7	dB				
Antenna Gain	10.4	dBi				
RX Sensitivity (1-24Mbps)	-83	dBm				
Fade Margin	2.9	dB				
RX Sensitivity (54Mbps)	-75	dBm				
Fade Margin	-5.1	dB				

Another HSMM Application

Broadband-Hamnet[™] www.broadband-hamnet.org

- Best source of help and documentation
 - Technical gurus
 - Experimenters, developers, true believers
- Committed to supporting EMCOMM systems

Wireless Networking for the Developing World Excellent 504 page tutorial

http://wndw.net/download/WNDW_Standard.pdf